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Introduction

* Why do we need simulated observations of
waves at all

* What do we get from them, or what the
simulations can do



1. Non-locality of radiative transport:
contribution function in photosphere
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The radiation is formed between 500 and 1000 km. Within this range:
* Density and pressure change by ~2 orders of magnitude
 Temperature changes by ~4000K
e Plasma B changes from ~5 to ~0.1
e Helpful: formation height difference between 417nm and G-band is about 100 km.



Simultaneous ROSA observations and simulations
in 417 nm and G band: oscillation phase difference
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Both occurrence plots show a phase shift of about 8 degrees between 417 nm
and G-band filters for wide range of periods, giving the oscillation phase speed of
about 8 km/s. Simulated oscillations are not induced and occur naturally as a
property of the model.

Jess et al. ApJ 2012



Implications for helioseismology

Famous picture by Paul Cally:

0.4

0.2}

0

z (Mm)

-0.4

-0.6 +
-0.8 |

/

All this can be within the

line formation region, but
affects travel times

-0.2 ¢

. 1




Implications for solar atmospheric energy
balance: Poynting flux
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Net Poynting flux, different B configurations
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Chromospheric heating

- Is possible with waves due to non-ideal resistive mechanismes.

- Alfvén turbulence. 1.5D simulations, AW with broad spectrum are fed through the
bottom boundary.

= 102

o~

A

D o / |

c 10 |

)

© |

@) I

5 107 |

C

] I

+ |
107 ' ' :

0 1000 2000 3000

Height above photosphere(km)

Arber et al 2015, submitted



Net Poynting flux

In ideal magneto-convection simulations, enough energy
flux is produced in the photosphere to heat everything one
needs, there are also mechanisms to convert and absorb.
The major part of PF comes from horizontal, torsional
motions at very small, intergranular scales:

- difficult to observe.
- needs observational confirmation, but how and where to

look?



2. Limb vs disk solar observations

Disk centre



Limb vs disk solar observations

Of course, it is not as simple and nice as that — mainly due to non-
locality of radiative transport in optically thick regime + nLTE
effects.

But:

* Horizontal flows become line-of-sight

* Horizontal magnetic fields become Stokes-V measurable

e Radial structure becomes (probably) more apparent than at the
disk centre

Generally, limb and disk observations together give 3D structure
of the solar atmosphere



Observations: acoustic power variability
on the position at the solar disk

AR9787, SOHO MDI, Nil 6787A Doppler, analysis by Sergei Zharkov
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“realistic” 3D sunspot

Model requirements:

* Stable for linear MHD simulations.
* ‘Looks’ real with spectral synthesis.

 Adjustable.

Based on the Khomenko et al. (2009) Model:
* A self-similar solution in the lower layers
*A semi-empirical solution in the upper layers

Creates a convectively stable quiet Sun and
umbral distribution of temperature, pressure
and density, then solves hydrostatic
equilibrium with an enforced non-negative

Brunt-Vaisala frequency.

For more details and simulations please send
an email to Damien Przybylski:

damien.przybylski@monash.edu
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Simulations: acoustic power variability on
the position at the solar disk

Fel 6173A line core Doppler shift, acoustic power maps
We see slow MAWSs. Line wing does not show it.
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Torsional motions in intergranular lanes

-MURaM code (Vogler et al 2005)
-Domain size is 12x12x3.2 Mm resolved by 480x480x320 grid cells

-50G / 200G unipolar initial magnetic field / bottom-boundary B advection
-Photospheric “vortices” generation and their links to strong photospheric magnetic
fields were described in Shelyag et al 2011.

Velocity field lines show vortex structures in strong magnetic field regions.
Single-fluid ideal MHD: magnetic field is frozen into plasma.
Why the magnetic field lines do not show the same structures?

Because the velocity field is not steady-state: it is an oscillation



Alfvén waves

To identify wave types, we plot time-distance diagrams for the vertical component of
vorticity in vortex structures. Also, overplot tracks for test particles moving with the local
time-dependent Alfvén speed.
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Shelyag et al, ApJL 2013

 The domain is filled with the structures exhibiting rapid vertical propagation of vorticity
perturbation. No preferred frequency; possibly resolution-dependent.

* Alfvén speed can reach 70 km/s, normally about 40 km/s in higher photosphere in the
magnetic field regions. Flow speeds never exceed 5-15 km/s. Propagation of vorticity
perturbation cannot be explained with flows. It propagates with Alfvén speed.

“Vortices” do not generate Alfvén waves: they look like they are Alfvén waves themselves.



Without observational confirmation, it
is still unclear if there are small-scale
AW. Also, experts in non-ideal plasma
physics say there could be no.

Need observational confirmation,
where to look?



Off-centre simulated spectropolarimetry

NICOLE code by Hector Socas-Navarro (IAC, Spain) is used to compute the Stokes profiles.
Different viewing angles are achieved by shifting the layers of the MHD box and
recalculating LOS and perp. magnetic field and LOS velocity.



5A line

Fel 6302
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Plasma parameters and Fel 6302.5A line
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arcsec

arcsec

V, s from Fel 6302 at 60 degrees

Original resolution, 25 km

Degraded with Hinode PSF
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Shelyag&Przybylski, PASJ, 2014
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The limb simulation

16 MURaM models are stacked together and then curved to make the
“spherical” (cylindrical, in fact) solar surface. Velocity and magnetic field
are recalculated accordingly.
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Simulated limb, images

6301.5A core

6300A continuum
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Simulated limb, average profiles

The 6302A line profiles go into emission. But the wings
rise first.
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S-p observation of the limb, Hinode,
Lites et al 2010
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Lites et al (2010) show similar profiles. They say emission in the wings is due to 3D
non-LTE scattering. Apparently, not only — 1 used 1D LTE.



How the emission-absorption profiles
are formed

Granule

Surface

Granule

Here, absorption-emission profiles are formed in three stages: (A) — continuum
formation, (B) — Doppler-shifted emission profile in the positive T-gradient with

torsional flow, (C) — normal absorption profile.
Shelyag, ApJ, 2015



Conclusions

Simulations have been shown to be widely successful
in simulating a variety of photospheric effects —
including waves

Simulations (if you believe them) can give you a hint
on where to look and what to expect in observations
If you don’t believe them, there is a plenty of space
to improve

If you are interested in some of those results/models,
let me know
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