First Detection of Radial and Azimuthal Oscillations in Halo CMEs

Harim Lee, Y.-J. Moon, Valery M. Nakariakov

School of Space Research, Kyung Hee University harim@khu.ac.kr / Lee et al., ApJL, 803, 2015

Introduction

- There have been many observations on the oscillations of prominence/filaments [Oliver & Ballester 2002; Lin et al. 2007; Tripathi et al. 2009] and coronal loops [Aschwanden et al. 2003; Nakariakov & Verwichte 2005; Ruderman & Erdelyi 2009; Terradas 2009].
- The interest in MHD oscillations is connected with MHD seismology diagnostics of plasma parameters and physical processes operating in the plasma by means of MHD oscillations.

Introduction

■ Krall et al. [2001] found that the projected velocities varied with the period of about 4 - 6 hours for 11 CME events.

■ Shanmugaraju et al. [2010] found that the periods of quasi-periodic oscillations range between 48 and 240 minutes for 15 CME events.

Data

We consider well-observed 9 HCMEs by LASCO from 2011 February to June.

➤ The running difference images of the propagation of the HCME (5:42-07:42 UT) on 2011 June 21. The radial white lines (every 15°) show the given direction and black dots show the measured front edge of the HCME.

Spherical harmonics

: Laplace's equation in spherical coordinates

$$\nabla^2 f = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2 f}{\partial \varphi^2} = 0$$

$$r^2 \nabla^2 Y_{\ell}^m(\theta, \varphi) = -\ell(\ell+1) Y_{\ell}^m(\theta, \varphi)$$

Is called spherical harmonic function of degree ℓ and order m

 ℓ : degree, the total number of node circles on the sphere

m: longitudinal order, the number of node circles through the poles

$$\ell=1, m=0$$

$$\ell = 3, m = 2$$

$$\ell = 10, m = 5$$

$$\ell=3, m=2$$

$$\ell=1, m=0$$
 $\ell=3, m=2$ $\ell=10, m=5$ $\ell=3, m=2$ $\ell=5, m=2$

Results

Time [UT]

Results (wave mode: m=1)

✓ Oscillation direction (arrow): 75° ✓ Speed amplitude: 400 km/s

✓ Oscillation period: 24 mins ✓ Projection speed: 800 km/s

Results (wave mode: m=1)

- ✓ Oscillation direction (arrow): 135° ✓ Speed amplitude: 300 km/s
- ✓ Oscillation period : 48 mins ✓ Projection speed : 800 km/s

Results (wave mode: m=2)

- ✓ Oscillation direction: 15°, 105°
- ✓ Oscillation period : 24 mins

- Speed amplitude: 800 km/s
- / Projection speed: 1500 km/s

Results (complex wave pattern)

- ✓ Oscillation direction: 30°, 90°
- ✓ Oscillation period: 24 mins

- ✓ Speed amplitude: 700 km/s
- ✓ Projection speed: 1300 km/s

Results

 \triangleright Correlation between (a) the observed maximum projected speed (V_{pro}) and the oscillation amplitude (2 Δ V). (b) the oscillation period and amplitude.

Discussions

- One interpretation is connected with the natural oscillations of the plasmoid displaced from its equilibrium.
- In particular, estimations performed by Cargill et al. [1994] and Filippov et al. [2001] showed that a curved magnetic rope could perform oscillations with a period up to several tens of minutes.

Discussions

- These models accounted for the restoring force caused by the perturbations of the magnetic field and also the aerodynamic drag force.
- These results would be consistent with the observed coincidence of the m=1 oscillation polarization with the direction along the HCME position angle.

Discussions

• Another possibility is connected with the typical zigzagging trajectory of an emerging body, connected with shedding of vortices.

■ This mechanism belongs to the class of self-oscillations that appear because of the nonlinear conversion of DC energy (e.g. of the steady flow) in AC energy (e.g. the transverse oscillatory motion).

• B_e : external magnetic field

F: MHD force

Nakariakov et al. [2009]

Summary

- We present the first observational detection of radial and azimuthal oscillations in full HCMEs.
- The oscillations in seven events are found to be associated with distinct azimuthal wave modes with the azimuthal wave number m=1 for six events and m=2 for one event.
- We find that the development of all these HCMEs is accompanied with quasi-periodic variations of the instantaneous radial velocity with the periods ranging from 24 to 48 minutes.

Summary

- The amplitudes of the instant speed variations reach about a half of the projected speeds. The amplitudes are found to anti-correlate with the periods and correlate with the HCME speed, indicating the nonlinear nature of the process.
- The polarization of the oscillations in these seven HCMEs is broadly consistent with those of their position angles with the mean difference of 43 degrees.
- The oscillations may be connected with natural oscillations of the plasmoids around a dynamical equilibrium, or self-oscillatory processes, e.g. the periodic shedding of Alfvenic vortices.

 16