Solar flares, current sheets, and finite-time singularitiesin Hall magnetohydrodynamics

Yuri Litvinenko

Department of Mathematics, University of Waikato, New Zealand

Outline

Reconnecting current sheets in the flaring solar corona

- Self-similar solutions for current sheet formation in 2D magnetohydrodynamics (MHD) and Hall MHD
- **Finite-time singularities in Hall MHD**

Energy release in flares

Flare:

 impulsive release of magnetic energy as radiation, heat, fast flows and particles in the lower corona of the Sun.

Total flare energy up to $\mathcal{E} \simeq 10^{32}$ erg:

$$
B = 100 \text{ G}, \quad L = 10^{10} \text{ cm} \implies \frac{B^2}{8\pi} L^3 \ge \mathcal{E}
$$

Flare time $t_f \simeq 10^3$ \degree S:

$$
t_f \le 100 \ t_A, \quad t_A = \frac{L}{v_A}, \quad v_A = \frac{B}{\sqrt{4\pi\rho}}
$$

Reconnecting current sheet

Solar flare geometry

(Sturrock, 1968)

Observational evidence for reconnection

(McKenzie, 2001)

RHESSI X-ray images of ^a current sheet

(Sui and Holman, 2003)

Flare geometry in three dimensions

(Machado et al., 1983)

Hugh Hudson's archive of flare cartoons

A recent flare cartoon

(Janvier, 2014)

Current sheet formation at ^a neutral line

Parameters of ^a solar active region

Typical values:

$$
L = 10^{9.5}
$$
 cm, $T = 10^6$ K, $\rho = 10^{-15}$ g cm⁻³,

$$
B = 10^2 \text{ G}, \quad v_A = \frac{B}{\sqrt{4\pi\rho}} \simeq 10^9 \text{ cm s}^{-1}
$$

Dimensionless resistivity:

$$
\eta = \frac{c^2}{4\pi v_A L\sigma} \simeq 10^{-14.5}
$$

Dimensionless ion inertial length:

$$
d_i = \frac{c}{L\omega_{pi}} \simeq 10^{-6.5} > \eta^{1/2}
$$

Dimensionless equations of Hall MHD

Momentum equation:

$$
\partial_t \mathbf{v} + (\mathbf{v} \cdot \nabla) \mathbf{v} = -\nabla p + \mathbf{J} \times \mathbf{B}
$$

Ohm's law:

$$
\mathbf{E} + \mathbf{v} \times \mathbf{B} = d_i(\mathbf{J} \times \mathbf{B} - \nabla p_e)
$$

Incompressibility:

$$
\nabla \cdot \mathbf{v} = 0
$$

Maxwell's equations:

$$
\nabla \times \mathbf{E} = -\partial_t \mathbf{B}, \quad \nabla \cdot \mathbf{B} = 0, \quad \mathbf{J} = \nabla \times \mathbf{B}
$$

$2\frac{1}{2}$ D Hall MHD solution

$$
\mathbf{v}(x, y, t) = \nabla \phi \times \hat{\mathbf{z}} + W \hat{\mathbf{z}}
$$

$$
\mathbf{B}(x, y, t) = \nabla \psi \times \hat{\mathbf{z}} + Z \hat{\mathbf{z}}
$$

Planar components:

$$
\partial_t (\nabla^2 \phi) + [\nabla^2 \phi, \phi] = [\nabla^2 \psi, \psi]
$$

$$
\partial_t \psi + [\psi, \phi] = d_i [\psi, Z]
$$

Axial components:

$$
\partial_t W + [W, \phi] = [Z, \psi]
$$

$$
\partial_t Z + [Z, \phi] = [W, \psi] + d_i [\nabla^2 \psi, \psi]
$$

A self-similar solution

Stream function:

$$
\phi=-\gamma(t)xy
$$

Flux function:

$$
\psi = \alpha(t)x^2 - \beta(t)y^2
$$

Axial speed:

$$
W = f(t)x^2 + g(t)y^2
$$

Axial magnetic field:

$$
Z=h(t)xy
$$

vv and **B** at $t = 0$

Reconnection in ^a resistive viscous plasma

 $\eta\neq 0, \ \nu\neq 0 \Longrightarrow$

$$
\psi \to \psi + 2\eta \int (\alpha - \beta) dt
$$

$$
W \to W + 2\nu \int (f + g) dt
$$

The similarity reduction (a system of ODEs)

$$
\dot{\alpha} - 2\alpha\gamma - 2d_i\alpha h = 0
$$

$$
\dot{\beta} + 2\beta\gamma + 2d_i\beta h = 0
$$

$$
\dot{f} - 2\gamma f + 2\alpha h = 0
$$

$$
\dot{g} + 2\gamma g + 2\beta h = 0
$$

$$
\dot{h} + 4\alpha g + 4\beta f = 0
$$

Current sheet formation in 2D MHD

$$
d_i = 0
$$

$$
f = g = h = 0, \quad \gamma = \gamma_0
$$

$$
\dot{\alpha} - 2\alpha\gamma_0 = 0
$$

$$
\dot{\beta} + 2\beta\gamma_0 = 0
$$

Exponential growth, no finite-time singularities (FTS):

$$
\alpha(t) = \exp(2\gamma_0 t)
$$

$$
\beta(t) = \exp(-2\gamma_0 t)
$$

(Chapman and Kendall, 1963; Sulem et al., 1985;Grauer and Marliani, 1998)

Effect of the Hall term on the magnetic field

 $d_i>0$

 $t\ll 1$:

$$
\alpha(t) \approx 1 + (2\gamma_0 + 2d_i h_0)t
$$

$$
\beta(t) \approx 1 - (2\gamma_0 + 2d_i h_0)t
$$

The angle between the magnetic separatrices, $\psi = 0$:

$$
\tan\frac{\theta}{2} = \left(\frac{\beta}{\alpha}\right)^{1/2} \approx 1 - (2\gamma_0 + 2d_i h_0)t
$$

Collapse to a current sheet: $d_i h_0$ $_0 = 10^{-7}$ 4

 $\alpha(0)=\beta(0)=1, \, \gamma(0)=\gamma_0,$ $f(0) = g(0) = 0$ Collapse to a current sheet: $d_i h_0$ $_0 = 10^{-7}$ 4

Finite-time singularity: ^a mechanical analogy

FTS: $h(t) \rightarrow \infty$ as $t \rightarrow t_s$

$$
\ddot{h} + U'(h) = 0
$$

$$
U(h) = -\frac{1}{2}(d_i^2h^4 + a^2h^2) + \frac{1}{2}(d_i^2h_0^4 + a^2h_0^2) - 8(\alpha_0g_0 + \beta_0f_0)^2
$$

$$
a^{2} = -2[4d_{i}(\alpha_{0}g_{0} - \beta_{0}f_{0}) - 8\alpha_{0}\beta_{0} + d_{i}^{2}h_{0}^{2}]
$$

Finite-time singularity: ^a mechanical analogy

Criterion for the FTS absence

$$
\alpha_0 \beta_0 (\alpha_0 + d_i f_0)(\beta_0 - d_i g_0) \ge 0
$$

$$
d_i(\alpha_0 g_0 - \beta_0 f_0) - 2\alpha_0 \beta_0 \ge 0
$$

(Litvinenko and McMahon, 2015)

Behaviour near the singularity $(h > 0)$

$$
\tau = (t_s - t) \to 0, \quad \Gamma = \int_0^t \gamma(t')dt' \to \Gamma_s
$$

$$
\alpha \approx \frac{1}{4(\beta_0 - d_i g_0)} \exp(2\Gamma_s)\tau^{-2}
$$

$$
\beta \approx 4\alpha_0 \beta_0 (\beta_0 - d_i g_0) \exp(-2\Gamma_s)\tau^2
$$

$$
d_i f \approx -\frac{1}{4(\beta_0 - d_i g_0)} \exp(2\Gamma_s)\tau^{-2}
$$

$$
d_i g \approx -(\beta_0 - d_i g_0) \exp(-2\Gamma_s)
$$

$$
d_i h \approx \tau^{-1}
$$

An intermediate asymptotic solution

$$
h(t) \approx \left(h_0 \cosh(at) + \frac{\dot{h}_0}{a} \sinh(at)\right) \times
$$

$$
\left[1 - \frac{d_i^2}{16a^2} \left(h_0 + \frac{\dot{h}_0}{a}\right)^2 \exp(2at)\right]^{-1}
$$

Singularity time, $h(t_s) = \infty$:

$$
t_s = \frac{1}{2a} \ln \left[\frac{16a^2}{d_i^2} \left(h_0 + \frac{\dot{h}_0}{a} \right)^{-2} \right]
$$

Solar flares as finite-time singularities?

(SDO EUV image of an eruption on 31/08/2012)

An estimate for the solar flare onset time

$$
L = 10^{9.5} \text{ cm}, \quad T = 10^6 \text{ K}, \quad n = 10^9 \text{ cm}^{-3},
$$

 $B = 10^2 \text{ G}, \quad v_A = \frac{B}{\sqrt{4\pi m_p n}} \simeq 10^9 \text{ cm s}^{-1}$

$$
d_i = \frac{c}{L\omega_{pi}} \simeq 10^{-6.5}
$$

$$
a \simeq h_0 \simeq 1 \Longrightarrow t_s \simeq \frac{L}{v_A} \ln \frac{1}{d_i} \simeq 30 \text{ s}
$$

Summary

Observational data and theoretical models strongly suggest that reconnecting current sheets, separating the interacting magneticfluxes in the solar atmosphere, play the key role in thedynamics and energetics of solar flares.

- **The current sheet formation can be modelled as the** development of ^a singularity in the solution for the electric current density at ^a magnetic neutral line. A finite-time collapseto the current sheet can occur in ^a weakly collisional plasma, described by Hall magnetohydrodynamics.
- \blacksquare Predictions made using the exact self-similar solutions may have important implications for magnetic reconnection in thelaboratory and space plasmas.