A User's Guide to Nonlinear Force-free Fields

M.S. Wheatland

School of Physics Sydney Institute for Astronomy The University of Sydney

The 3rd Asia-Pacific Solar Physics Meeting Seoul November 2015

AR10978 on 12 Dec 2007 (DeRosa et al. ApJ 811 107 2015)

Overview

Background The utility of NLFFF modeling

NLFFF modeling

The data The model and the BCs The problem of inconsistency The effects of inconsistency How accurate is my solution?

Summary

Background: The utility of NLFFF modeling

- Sunspot magnetic fields power solar flares, eruptions (CMEs)
 - we would like to better understand the source regions
- The coronal field is not amenable to direct measurement
 - vector magnetograms provide values in the low atmosphere
- Model fields may be constructed from the available data
 - a process referred to as extrapolation or reconstruction
- The nonlinear force-free field (NLFFF) model is often used
 - the actual coronal field may be approximately force-free (e.g. Metcalf et al. 1995)
- NLFFF extrapolation is popular
 - the model requires only field values as boundary conditions
 - the model includes electric currents and hence has free energy
 - the solutions may quantify the energy available for activity
 - ► NLFFF modelling is enabling many studies (e.g. ADS suggests ≈ 50 refereed publications in 2014 using NLFFF extrapolation)

Top row (L to R): Chintzoglou et al. (2015); Moraitis et al. (2014); Yang et al. (2015). Middle row: Tadesse et al. (2015); Inoue et al. (2014); Cheung et al. (2015). Bottom row: Chitta et al. (2014); Mandrini et al. (2014); Cheng et al. (2014); Wang et al. (2014).

AR12158 on 10 September 2014 (courtesy S.A. Gilchrist)

NLFFF modeling: The data

- Zeeman effect imprints B on photospheric lines (del Toro Iniesta 2003)
 - ▶ Stokes polarisation profiles $I(\lambda)$, $Q(\lambda)$, $U(\lambda)$, $V(\lambda)$ measured
 - Stokes inversion is the process of inferring magnetic field
 - an inference rather than a direct measurement/observation
- ► 180 degree ambiguity in B_⊥ must be resolved (Metcalf 1994; Metcalf et al. 2006; Leka et al. 2009)
- Vector magnetogram: photospheric map of $\mathbf{B} = (B_x, B_y, B_z)$
 - Iocal heliocentric co-ordinates (z is local radial direction)
- New space-based instruments
 - Hinode satellite
 - Solar Optical Telescope Spectro-Polarimeter (SOT/SP) (Tsuneta et al. 2008)
 - Solar Dynamics Observatory satellite
 - Helioseismic & Magnetic Imager (SDO/HMI) (Schou et al. 2012)

The data provide BCs for NLFFF modeling

NLFFF modeling: The model and the BCs

Force-free model for coronal magnetic field B: (Wiegelmann & Sakurai, Living Reviews of Solar Physics, September 2012)

$$\mathbf{J} imes \mathbf{B} = 0$$
 and $abla \cdot \mathbf{B} = 0$

(1)

(2)

- electric current density $\mathbf{J} = \mu_0^{-1} \nabla \times \mathbf{B}$
- Writing $\mathbf{J} = \alpha \mathbf{B} / \mu_0$ (**J** is parallel to **B**):
 - $\mathbf{B} \cdot \nabla \alpha = \mathbf{0}$ and $\nabla \times \mathbf{B} = \alpha \mathbf{B}$
 - $\blacktriangleright \alpha$ is the force-free parameter
- Boundary conditions in a half space: (Grad & Rubin 1958)
 - 1. B_z values at z = 0
 - ▶ 2. α values at z = 0 over one polarity of B_z (labelled P, N)
 - equivalently: 2. $J_z = \alpha B_z$ over one polarity of B_z
- Some force-free methods use B over both P and N as BCs
 - this defines α (or J_z) over both polarities
 - it is formally an over-prescription

- Methods of solution of Eqs. (2) are iterative
 - ► Grad-Rubin iteration (Grad & Rubin 1958; Amari et al. 2006; Wheatland 2007)
 - Optimization (Wheatland, Sturrock & Roumeliotis 2000; Wiegelmann 2008)
 - magnetofrictional (Chodura & Schlúter 1981; Valori, Kliem, and Keppens 2005)

Grad-Rubin method

- \blacktriangleright 1. currents are run along field lines subject to BCs on α
- 2. the currents perturb the field; return to 1.

Three stages in a G-R iteration showing field lines (black) and current streamlines (yellow).

NLFFF modeling: The problem of inconsistency

- Magnetogram data are inconsistent with the force-free model
 - necessary conditions for a force-free field are not met (Molodenskii 1969)
- Origins of the inconsistency of the data and the model:
 - errors in measurements and field inference (e.g. Leka et al. 2009)
 - non-magnetic forces at the dense photosphere (Metcalf et al. 1995)

Effect of inconsistency on NLFFF solutions

(Schrijver et al. 2006; Metcalf et al 2008; Schrijver et al. 2008; DeRosa et al. 2009, DeRosa et al. 2015)

- results produced by NLFFF codes may not agree:
 - with the NLFFF model, for a given solution method
 - with other methods of solution, for the same BCs
 - with equally valid results for the same method
- different results may have:
 - different energies and free energies
 - different field line structures

NLFFF modeling: The effects of inconsistency

Grad-Rubin methods

- Vector magnetograms provide α values over *P* and *N*
 - the data provide two sets of boundary conditions
 - two different solutions (the P and N solutions) are implied
- The iteration sequence may not converge (for P and/or N)
 - Convergence may be achieved by:
 - ▶ smoothing of B_x and B_y values or α values (e.g. Canou et al. 2009)
 - censoring α values in weak field regions (e.g. Wheatland & Leka 2011)

P and N solutions for AR10978 on 12 Dec 2007 - CFIT bin 4 solution as described in DeRosa et al. (2015)

Optimization

Optimization is a popular method

(Wheatland, Sturrock & Roumeliotis 2000; Wiegelmann 2008)

- the method uses values of B over P and N as BCs
- so there is only one result...
- ...but for inconsistent BCs it is not an accurate NLFFF solution
- The result may have $\mathbf{J} \times \mathbf{B} \neq 0$ and/or $\nabla \cdot \mathbf{B} \neq 0$
 - optimization explicitly involves departure from $\nabla\cdot {\bf B}=0$
- Preprocessing is often applied

(Wiegelmann et al. 2006; Wiegelmann & Inhester 2010)

- the BCs are altered to meet necessary conditions for the model
- this procedure may improve the quality of solutions
- but preprocessed BCs are still inconsistent with the model (DeRosa et al. 2009)

Quite generally, methods change the BCs substantially

• Values of $B_h = (B_x^2 + B_y^2)^{1/2}$ and ΔB_h for a G-R calculation:

AR10978 on 12 Dec 2007 - CFIT bin 2 P solution (DeRosa et al. 2015)

NLFFF modeling: How accurate is my solution?

- There are two (related) questions
 - ► Q1 Does it represent what is on the Sun?
 - ► Q2 Is it can accurate solution to the model?
- Approaches for Q1 may include:
 - comparison of field line traces and EUV/X-ray images
 - comparison with results from other methods and models
 - consideration of the changes in BCs required in modeling
- Common metrics for Q2 include: (Wheatland et al. 2000)
 - the pointwise average of $|\nabla \cdot \mathbf{B}_i|$ over grid points *i*
 - ► the weighted average angle between **J**_i and **B**_i over the grid
- However these 'answers' to Q2 are hard to interpret
 - the significance of a value depends on how a solution is used

Q2: If you are using solutions to estimate energy

- Check the non-solenoidal contributions to energy: (Valori et al. 2013)
 - Perform the Helmholtz decomposition:

$$E = E_{p,s} + E_{p,ns} + E_{J,s} + E_{J,ns} + E_{mix}$$
(3)

$$E_{\rm p,s} = \frac{1}{2\mu_0} \int \mathbf{B}_{\rm p,s}^2 \, dV \qquad E_{\rm p,ns} = \frac{1}{2\mu_0} \int \mathbf{B}_{\rm p,ns}^2 \, dV$$
 (4)

$$E_{\rm J,s} = \frac{1}{2\mu_0} \int \mathbf{B}_{\rm J,s}^2 \, dV \qquad E_{\rm J,ns} = \frac{1}{2\mu_0} \int \mathbf{B}_{\rm J,ns}^2 \, dV \tag{5}$$

$$E_{\text{mix}} = \frac{1}{\mu_0} \int \left(\mathbf{B}_{\text{p,s}} \cdot \mathbf{B}_{\text{p,ns}} + \mathbf{B}_{\text{J,s}} \cdot \mathbf{B}_{\text{J,ns}} + \mathbf{B}_{\text{p,s}} \cdot \mathbf{B}_{\text{J,ns}} - \mathbf{B}_{\text{J,ns}} + \mathbf{B}_{\text{p,s}} \cdot \mathbf{B}_{\text{J,ns}} + \mathbf{B}_{\text{p,s}} \cdot \mathbf{B}_{\text{J,s}} \right) dV$$
(6)

where p denotes potential and J denotes current-carrying

▶ and s denotes solenoidal $(\nabla \cdot \mathbf{B} = 0)$ and ns denotes non-solenoidal

For a solenoidal field
$$E = E_p + E_J$$
 with $E_p = E_{p,s}$, $E_J = E_{J,s}$ and
 $E_{p,ns} = E_{J,ns} = E_{mix} = 0$ (7)

• check that $E_{p,ns}$, $E_{J,ns}$ and $|E_{mix}|$ are small compared with E_{free}

 Optimization/magnetofrictional calculations may fail the test (DeRosa et al. 2015)

Helmholtz decomposition of field energy for NLFFF calculations for AR10978 on 12 Dec 2007 (DeRosa et al. 2015).

Q2: If you are using solutions to identify specific field structures

- Trace field lines and corresponding current streamlines
 - they should agree if the structure is force-free
 - this is quite a stringent test
 - an example is shown below for a G-R calculation

CFIT bin 4 P solution for AR10978: field lines (black) and current streamlines (yellow) (DeRosa et al. 2015).

- Coronal magnetic field modeling is motivated by solar activity
- Vector magnetograms give BCs for coronal field extrapolation
- The nonlinear force-free (NLFFF) model is popular
 - but vector magnetogram data are inconsistent with the model
 - methods may give unreliable results for solar data
- If you are using NLFFF modeling check your results
 - consider the quality of solution to the model
 - consider whether it represents what is on the Sun
- Apply tests appropriate for the questions being asked

CURRENTS IN GEOSPACE AND BEYOND

PROGRAM COMMITTEE

Chris Arridge - UK Fran Bagenal - USA Iannis Dandouras - France Eduard Dubinin - Germany Malcolm Dunlop - UK Catherine Johnson - Canada Kanya Kusano - Japan Michael Liemohn - USA Hermann Lühr - Germany Brigitte Schmieder - France Igor Veselovsky - Russia Masatoshi Yamauchi - Sweden Akimasa Yoshikawa - Japan

Dubrovnik, Croatia, 22-27 May 2016

 \wedge

Conveners

CHAPMAN

chapman.agu.org/spacecurrents

ANDREAS KEILING UC BERKELEY, USA Octav Marghitu ISS, Romania Michael Wheatland U Sydney, Australia