The 3rd Asia-Pacific Solar Physics Meeting Seoul National University, Korea 3 November 2015

A New Method for Coronal Magn etic Field Reconstruction

Sibaek Yi¹, G. S. Choe^{1,2} & Daye Lim¹

¹School of Space Research, Kyung Hee University Yongin, Korea

²Kyung Hee Astronomical Observatory, Kyung Hee University Yongin, Korea

Coronal Magnetic Field Reconstruction

- Coronal magnetic fields are difficult to measure.
- We need to reconstruct co ronal magnetic fields base d on vector-magnetogram data in the photosphere.

EUV observation by SDO AIA

Force-Free Field Approximation

$J \times B = \mathcal{V}_p + \rho g$

For $\beta \ll 1$, and $|\mathbf{j} \times \mathbf{B}| \gg \rho \mathbf{g}$,

 $\mathbf{J} \times \mathbf{B} \approx 0$ $\mathbf{J} = \mathbf{\nabla} \times \mathbf{B} = \alpha(\mathbf{r})\mathbf{B}$

For well-posedness of the problem, *Bin* and *Jin* S hould be given at the boundaries, nothing more (Grad and Rubin 1958).

There Is No Extrapolation, but Reconstruction.

Can we extrapolate the FFF from the solar surface upward as Wu et al. (1990) proposed?

$$\frac{\partial B_x}{\partial z} = \alpha B_y + \frac{\partial B_z}{\partial x},$$
$$\frac{\partial B_y}{\partial z} = -\alpha B_x + \frac{\partial B_z}{\partial y},$$
$$\frac{\partial B_z}{\partial z} = -\frac{\partial B_x}{\partial x} - \frac{\partial B_y}{\partial y},$$
$$\alpha = \frac{1}{B_z} \left(\frac{\partial B_y}{\partial x} - \frac{\partial B_x}{\partial y} \right),$$
$$\frac{\partial B_z}{\partial z} = \frac{\partial}{\partial x} \left(\frac{\partial B_y}{\partial z} \right) - \frac{\partial}{\partial y} \left(\frac{\partial B_x}{\partial z} \right)$$

∂(

- An ill-posed problem like solving a Laplace equation with both Dirichlet and Neumann conditions only in a part of the boundary.
- An arbitrarily small error can exponentially grow with *z*.

Reconstruction Methods

- 1. Non-variational method
 - Grad-Rubin methods (Grad and Rubin 1958, Sakurai 1981, Amari et al. 1997, Wheatland 2004)

вто assumed

- \rightarrow J^{t1} loaded so that J^{t1} = $\alpha(x\downarrow 0, y\downarrow 0)$ B^{t0}
- \rightarrow **B***t*¹ obtained by $P \times Bt^1 = Jt^1$

Reconstruction Methods

2. Variational method

 $dW/dt = -\int V \uparrow \mathbf{F} \cdot \mathbf{v} \, dV < 0 \quad \text{for} \quad \mathbf{F} \cdot \mathbf{v} > \mathbf{0}$

• Optimization methods (so far the best) (Wheatland et al. 2000, Wiegelmann 2004)

 $L = \int V \uparrow m \left[/ \mathbf{J} \times \mathbf{B} / \mathbf{12} / B \mathbf{12} + / \nabla \cdot \mathbf{B} / \mathbf{12} \right] dV$

• Viscous MHD relaxation method (VMRM) (I noue et al. 2013, 2014)

Algorithm of Our Method

 $\mathbf{B} = \nabla \times \mathbf{A}$

 $\partial \mathbf{A}/\partial t = -\mathbf{J}\mathbf{I} \pm (\mathbf{J} \times \mathbf{B}) \times \mathbf{B}/B$

In our method, *г*в is naturally and exactly zero.

Implementation of Boundary Conditions

At the bottom boundary, imposing $P \cdot \mathbf{A} \downarrow xy = 0$,

 $\mathbf{A} \mathbf{J} x y = z \times \nabla \phi.$

Therefore,

 $\nabla lxy^{12} \phi = B lz$ and $\nabla lxy^{12} A lz = -J lz$

 $\rightarrow A \downarrow x$, $A \downarrow y$

 $\rightarrow A \downarrow z$

Nested Grid System and Boundary Conditions

Initial Condition – Current Preloaded

- Most FFF construction methods take a potential field as the initial condition.
- Then, current is initially located near the bottom bou ndary and gradually permeates the computational do main.
- In our initial condition, current is preloaded in the en tire computational domain.
- For example, assuming ∇×J⁰ = 0, J⁰ = ∇χ.
 ∇•J⁰ = 0 ⇒ Solving ∇²χ = 0 gives J⁰.
 Our initial field is given by ∇×∇×A⁰ = J⁰.

Numerical Methods for Approaching Equilibrium

 $dW/dt = -\int V \uparrow \mathbf{F} \cdot \mathbf{v} \, dV$

1. Frictional method

 $\mathbf{v} = a\mathbf{F}$

2. Gradient method

 $dt \downarrow n = aW \downarrow n dt \downarrow s / W \downarrow n - W \downarrow s$

 $\mathsf{LF} = \int \mathcal{V} \mathcal{T} = \int \mathcal{J} \times \mathbf{B} / \mathcal{T}^2 \, d\mathcal{V}$

Comparison of Convergence Rates

"Figures of Merits" by Schrijver et al. (2006)

 $C \downarrow vec \equiv \sum i \uparrow \mathbf{B} \downarrow i \cdot \mathbf{b} \downarrow i / \sqrt{\sum i} \uparrow \mathbf{B} \downarrow i \neq \mathbf{\Sigma} i \mathbf{\Sigma} i \mathbf{b} \downarrow \mathbf{b} \downarrow \mathbf{b} \downarrow i / \sum i \uparrow \mathbf{B} \downarrow i$

 $C \downarrow cs \equiv 1/M \sum_{i} \int \mathbf{B} \downarrow_i \cdot \mathbf{b} \downarrow_i / |\mathbf{B} \downarrow_i | |\mathbf{b} \downarrow_i | = 1/V \int V \int \mathbf{W} |\mathbf{j} \times \mathbf{b} / \mathbf{f} 2 / \mathbf{b} \mathbf{f} 2 dV$

 $E \downarrow n \uparrow' = 1 - \sum i \uparrow || \mathbf{b} \downarrow i - \mathbf{B} \downarrow i | / \sum i \uparrow || \mathbf{B} \downarrow i |$

 $E\downarrow m\uparrow'=1-1/M\sum_{i\uparrow} |\mathbf{b}\downarrow_i - \mathbf{B}\downarrow_i|/|\mathbf{B}\downarrow_i|$

 $\epsilon = \sum i \hat{1} / \mathbf{b} i / \hat{1} / \sum i \hat{1} / \mathbf{B} / \hat{1}$

b↓i: Numerical solutionB↓i: Exact solution*M*: Total number of grid points

Low and Lou Force-Free Field Model

Low and Lou (1990) presented a series of analytic solutions of the FFF equation

 $\partial f^2 A/\partial r f^2 + 1 - \mu f^2 / r f^2 \partial f^2 A/\partial \mu f^2 + Q d Q/d A = 0.$

Using the ansatz,

 $A=P(\mu)/r$ and Q(A)=aA $h^{1}+1/n$,

we have a solvable equation:

 $(1-\mu \hat{1} 2) d\hat{1} 2 P/d\mu + n(n+1)P + a\hat{1} 2 1 + n/n P\hat{1} + 2/n = 0.$

Analytic Solution and Numerical Solution – Appearance Comparison

Low and Lou an alytic solution

Our numerical solution

Two Test Cases in Schrijver et al. (2006)

♦ Case 1

- $n=1, m=1, l=0.3, \Phi=4/\pi$
- 64*1*3 grid
- *Bix*, *Biy*, and *Biz* are given at all six boundaries (overspecified at all six boundaries).
- A non-practical situation.

♦ Case 2

- $n=3, m=1, l=0.3, \Phi=4/5\pi$
- *N1*3 grid (*N*>64).
- Only **B** at z=0 is given (overspecified). We use only J_z .
- A practical situation.

Results of Two Different BC Settings

The same test as was done in Schrijver et al. (2006)

Model	Clvec	Clcs	E↓n′	E↓m′	E	<i>σ</i> (64 <i>1</i> 3)	Llf(6413)
Exact Solutio n	1	1	1	1	1	0	0
Case 1: B_x , B_y , and B_z are given at all six boundaries.							
Ours	1.00	0.98	0.88	0.80	0.98	1.3×10 <i>1</i> –4	1.2×10 <i>1</i> −5
Wiegelmann	1.00	1.00	0.97	0.96	1.02	3.7×10 <i>1</i> -2	1.9×10 <i>1</i> -2
Case 2: B_x , B_y , and B_z are given at the bottom boundary only.							
Ours	1.00	0.97	0.90	0.75	0.98	4.2×10 <i>1</i> –4	5.1×10 <i>1</i> –4
Wiegelmann	1.00	0.91	0.92	0.66	1.04	not given	not given

Flares in AR11974 on 2014 February 12

• GOES X-ray fluxes

Reconstruction of the Magnetic Field in AR11974

SDO AIA 171 Å Reconstructed grand lines 2014 Feb. 12 03:36:00 UT

Sigmoid Structures in AR11974

One inverse-S-shaped and two S-shaped structures

Large Scale Eruption in AR11974

SOHIPetupting160p CME0qb35ryod at 06:00:05 UT

Two Interwound Flux Tubes

2014. 02. 12. 03:36:00 UT

Reconnection and Evolution of the Flux Tubes

2014. 02. 12 . UT 03:36:0 0 2014. 02. 12 . UT 05:48:00 2014. 02. 12 . UT 10:24:00

Summary

- We have developed a new and efficient reconstruction method for coronal FFFs.
- When only the bottom boundary data are given, our method excels in "figures of merits" by Sc hrijver et al. (2006).
- The reconstructed magnetic field in AR11974 s hows significant features of the eruption proces ses there.

Why Sigmoids are S-Shaped (Inverse-S-Shaped) for Positive α (Negative α)

 $\alpha > 0$

a<0