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Coronal Magnetic Field Reconstruction 

•  Coronal magnetic fields are
 difficult to measure. 

 
•  We need to reconstruct co

ronal magnetic 1ields base
d on vector-magnetogram
 data in the photosphere. 

EUV observation by SDO AIA 



Force-Free Field Approximation 


𝐉×𝐁=𝛻p+𝜌g
 
For 𝛽≪1, and |𝐉×𝐁|≫𝜌g , 

𝐉×𝐁≈0 
𝐉=𝛻×𝐁=𝛼(𝐫)𝐁 
 
For well-posedness of the problem, 𝐵↓𝑛  and  𝐽↓𝑛  s
hould be given at the boundaries, nothing more 
(Grad and Rubin 1958).  
 
 



There Is No Extrapolation, but 
Reconstruction.   

Can we extrapolate the FFF from the solar surface 
upward as Wu et al. (1990) proposed?  

•  An ill-posed problem like 
solving a Laplace 
equation with both 
Dirichlet and Neumann 
conditions only in a part 
of the boundary. 

•  An arbitrarily small error 
can exponentially grow 
with z. 



 

1. Non-variational method 

•  Grad-Rubin methods  
          (Grad and Rubin 1958, Sakurai 1981, Amari et al. 1997, 

 Wheatland 2004) 



  𝐁↑0    assumed 
  →    𝐉↑1  loaded so that 𝐉↑1 =𝛼(𝑥↓0 , 𝑦↓0 )𝐁↑0 
  →    𝐁↑1  obtained by 𝛻× 𝐁↑1 = 𝐉↑1  
  

 
 

Reconstruction Methods 



2. Variational method 

𝑑𝑊/𝑑𝑡 =−∫𝑉↑▒𝐅⋅𝐯 𝑑𝑉<0     for    𝐅⋅𝐯>𝟎 
 

• Optimization methods (so far the best) 
          (Wheatland et al. 2000, Wiegelmann 2004) 
 
𝐿=∫𝑉↑▒[|𝐉×𝐁|↑2 /𝐵↑2  + |𝛻⋅𝐁|↑2 ]𝑑𝑉  

•  Viscous MHD relaxation method (VMRM) (I
noue et al. 2013, 2014) 

 
 

Reconstruction Methods 



Algorithm of Our Method 

𝐁=𝛻×𝐀 
 
𝜕𝐀/𝜕𝑡 =− 𝐉↓⊥ 
                      = (𝐉×𝐁)×𝐁/𝐵↑2   

 
 

In our method, 𝛻⋅𝐁 is naturally and exactly zero.  is naturally and exactly zero. 



 

At the bottom boundary, imposing 𝛻⋅ 𝐀↓𝑥𝑦 =0, 
 
𝐀↓𝑥𝑦 = 𝑧 ×𝛻𝜙. 


Therefore,  

𝛻↓𝑥𝑦↑2 𝜙= 𝐵↓𝑧 

and 
 𝛻↓𝑥𝑦↑2 𝐴↓𝑧 =− 𝐽↓𝑧  
 

Implementation of Boundary Conditions 

→𝐴↓𝑥 , 𝐴↓𝑦 

→𝐴↓𝑧  



Nested Grid System and 
Boundary Conditions 

Source surface 
𝐵↓𝑡 =0 

Conducting slip-wall 
𝐵↓𝑛 =0 

𝐴↓𝑥 ,  𝐴↓𝑦 , and 𝐴↓𝑧  are fixe
d 



 

•  Most FFF construction methods take a potential field
 as the initial condition.  

•  Then, current is initially located near the bottom bou
ndary and gradually permeates the computational do
main. 

•  In our initial condition, current is preloaded in the en
tire computational domain. 

•  For example,  


Initial Condition − Current Preloaded 

.by  given    is  field  initialOur  
.  gives 0 Solving 0
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Numerical Methods for Approaching 
Equilibrium 

𝑑𝑊/𝑑𝑡 =−∫𝑉↑▒𝐅⋅𝐯 𝑑𝑉 
 

1. Frictional method 

𝐯=𝑎𝐅 
 

2. Gradient method 

𝑑𝑡↓𝑛 =𝑎𝑊 ↓𝑛 𝑑𝑡↓𝑠 /𝑊 ↓𝑛 − 𝑊 ↓𝑠   

LF=∫𝑉↑▒|𝐉×𝐁|↑2  𝑑𝑉 



Comparison of Convergence Rates 

LF=∫𝑉↑▒|𝐉×𝐁|↑2  𝑑𝑉 



𝐶↓𝑣𝑒𝑐 ≡ ∑𝑖↑▒𝐁↓𝑖 ⋅ 𝐛↓𝑖  /√ ∑𝑖↑▒|𝐁↓𝑖 |↑2 ∑𝑖↑▒|𝐛↓𝑖 |↑2       

𝐶↓𝑐𝑠 ≡ 1/𝑀 ∑𝑖↑▒𝐁↓𝑖 ⋅ 𝐛↓𝑖 /|𝐁↓𝑖 || 𝐛↓𝑖 |    

𝐸↓𝑛↑′ =1−∑𝑖↑▒| 𝐛↓𝑖 − 𝐁↓𝑖 | /∑𝑖↑▒|𝐁↓𝑖 |   

𝐿↓𝑓 ≡ 1/𝑉 ∫𝑉↑▒|𝐣×𝐛|↑2 /𝐛↑2  𝑑𝑉  

𝜎≡ ∑𝑖↑▒|𝐣↓𝑖 × 𝐛↓𝑖 |/𝐛↓𝑖   /∑𝑖↑▒𝐣↓𝑖    

𝐛↓𝑖 : Numerical solution 
𝐁↓𝑖 : Exact solution 
𝑀: Total number of grid points 

𝜖= ∑𝑖↑▒|𝐛↓𝑖 |↑2  /∑𝑖↑▒|𝐁|↑2    

𝐸↓𝑚↑′ =1−1/𝑀 ∑𝑖↑▒|𝐛↓𝑖 − 𝐁↓𝑖 |/|𝐁↓𝑖 |    

“Figures of Merits”  
by Schrijver et al. (2006) 



Low and Lou Force-Free Field Model 
Low and Lou (1990) presented a series of 
analytic solutions of the FFF equation 

𝜕↑2 𝐴/𝜕𝑟↑2  + 1− 𝜇↑2 /𝑟↑2  𝜕↑2 𝐴/𝜕𝜇↑2  +𝑄𝑑𝑄/𝑑𝐴 =
0. 
 
Using the ansatz, 
 

𝐴= 𝑃(𝜇)/𝑟↑𝑛       and     𝑄(𝐴)=𝑎𝐴↑1+ 1/𝑛  , 
 
we have a solvable equation:  
 

(1− 𝜇↑2 )𝑑↑2 𝑃/𝑑𝜇 +𝑛(𝑛+1)𝑃+ 𝑎↑2 1+𝑛/𝑛 𝑃↑1+ 2/𝑛  =0. 



Analytic Solution and Numerical Solution 
− Appearance Comparison 

Low and Lou an
alytic solution 

Our numerical
 solution 



Two Test Cases in Schrijver et al. (2006) 
⟐  Case 1  

•  𝑛=1, 𝑚=1, 𝑙=0.3, Φ=4/𝜋 
•  64↑3  grid 
•  𝐵↓𝑥 , 𝐵↓𝑦 , and 𝐵↓𝑧  are given at all six boundaries (overspeci

fied at all six boundaries). 
•  A non-practical situation. 

 
⟐  Case 2 

•  𝑛=3, 𝑚=1, 𝑙=0.3, Φ=4/5𝜋  
•  𝑁↑3  grid (𝑁>64). 
•  Only 𝐁 at 𝑧=0 is given (overspecified). We use  only Jz. 
•  A practical situation. 

 



Results of Two Different BC Settings 

Model 𝐶↓𝑣𝑒𝑐  𝐶↓𝑐𝑠  𝐸↓𝑛 ′ 𝐸↓𝑚 ′ 𝜖 𝜎( 64↑3 ) 𝐿↓𝑓 ( 64↑3 ) 

Exact Solutio
n 

1 1 1 1 1 0 0 

  Case 1: Bx, By, and Bz are given at all six boundaries. 

Ours 1.00 0.98 0.88 0.80 0.98 𝟏.𝟑× 𝟏𝟎↑−𝟒  𝟏.𝟐× 𝟏𝟎↑−𝟓  

Wiegelmann 1.00 1.00 0.97 0.96 1.02 𝟑.𝟕× 𝟏𝟎↑−𝟐  𝟏.𝟗× 𝟏𝟎↑−𝟐  

  Case 2: Bx, By, and Bz are given at the bottom boundary only. 

Ours 1.00 0.97 0.90 0.75 0.98 𝟒.𝟐× 𝟏𝟎↑−𝟒  𝟓.𝟏× 𝟏𝟎↑−𝟒  

Wiegelmann 1.00 0.91 0.92 0.66 1.04 not given not given 

The same test as was done in Schrijver et al. (2006) 



02.12 UT 03:36:00  

02.12 UT 04:25:00 (M3.7) 

02.12 UT 10:24:00  

02.12 UT 06:58:00 (M2.3) 
02.12 UT 05:48:00  

•  GOES X-ray fluxes 

Flares in AR11974 on 2014 February 12 

02.12 UT 04:12:00  

02.12 UT 05:00:00  



Reconstruction of the Magnetic Field
 in AR11974 

SDO AIA 171 Å  
2014 Feb. 12 03:36:00 UT  Reconstructed field lines Magnetogram 



Sigmoid Structures in AR11974 

One inverse-S-shaped and two S-shaped structures 

𝛼= 𝐽↓𝑧 /𝐵↓𝑧   



Large Scale Eruption in AR11974 

An erupting loop
 at 04:35:00 UT 

SOHO LASCO C2
 CME observed at 
06:00:05 UT 



Two Interwound Flux Tubes 

2014. 02. 12. 03:36:00 UT 



Reconnection and Evolution of 
the Flux Tubes 

2014. 02. 12
.  
UT 05:48:00 

2014. 02. 12
.  
UT 10:24:00 

2014. 02. 12
. UT 03:36:0
0 



Summary 

• We have developed a new and efficient reconstr
uction method for coronal FFFs. 

• When only the bottom boundary data are given,
 our method excels in “figures of merits” by Sc
hrijver et al. (2006). 

•  The reconstructed magnetic field in AR11974 s
hows significant features of the eruption proces
ses there. 



Why Sigmoids are S-Shaped (Inverse-S-Shaped
) for Positive 𝛼 (Negative 𝛼)  (Negative 𝛼) 

𝐉↓𝐧  𝐁↓𝑛  

𝐁↓𝑡  

𝐉↓
𝐧  

𝐁↓
𝑛  

𝐁↓𝑡  

𝐉↓𝐧  𝐁↓𝑛  

𝐁↓𝑡  

𝐉↓
𝐧  

𝐁↓
𝑛  

𝐁↓𝑡  

𝛼>0 𝛼<0 

𝐁  𝐁  


