The 3rd Asia-Pacific Solar Physics Meeting APSPM 2015

3~6 November, 2015 Seoul National University, Seoul, Rep. of Korea

Motion of Plasma in Pores and their atmosph eres

Kyung-Suk Cho (趙京錫)

Collaboration with S.-C. Bong , E.-K. Lim, I.-H. Cho, Y.-H. Kim, Y.-D. Park, (KASI), H.-S. Yang, H.-M. Park and J.C. Chae (SNU)

(1) Statistical comparison between Pores & sunspotsby using SDO/HMI (PC-02)

KASI SDO Data Center (http://sdo.kasi.re.kr)

KDC for SDO

After arrival, the spacecraft spent several months using a technique called aerobraking, which involved dipping into the Martian atmosphere to adjust its orbit. In February 2002, science operations began.

Data

- Discovery sessions during the SVA encompassed multiple teams at Redbox.
- # 4096 PFSS 2048 PFSS 1024 PFSS 512 PFSS 48 hr MPEG
- Commercial Spaceflight 60 Day Report, June 29, 2011
- EUVI / AIA 195 Stonyhurst Heliographic
- Commercial Market Assessment (CMA) for Crew and Cargo Systems, April 2011 (742K PDF)

Browse Data 🔘

ourtesy of NASA/SDO and the AIA, EVE, and HMI science teamst. Korean Data Center for SDO, Korea astronomy & space science institute. 76 Daedeokdae-ro, Yuseong-gu, Daejeon, 305-348, Rep. of Korea

2010. 5 ~ 2015. 5, 2.5PB (1.5TB/day) SDO/AIA, SDO/HMI)

The Sun Now

Data Set (2010. 5 – 2015.2)

24,214 datasets of $I_{inner} A_{inner} B_{inner} V_{inner}$

A_{outer} > 2 MSH: 9881 Pores: 7464 Sunspots: 2417

MSH: Millionth of the Solar Hemisphere

(Cho et al. 2015)

Results

Bimodal distributions of I, B, Vlos

Pores: red-shifted Sunspots: blue-shifted

(2) Photosphere Observa tion using HINODE/SOT(Cho et al. 2010)

- Optical Telescope Assembly (OTA)
 - Optics type: Gregorian with heat dump mirror
 - Primary mirror: 50 cm, Diffraction limit: 0.2" 0.3"
- Focal Plane Package (FPP)
 - Broadband Filter Imager(BFI)

() - Spectropolarimeter(SP)

Characteristics of Pores

- Doppler velocity is negatively correlated with field strength.
- Darkness of the pores increases with their field strength.ho
- Pores have strong magnetic field and downward motions.

Stokes I & LOS magnetic flux density

Doppler velocity map

Temporal variation of the Pores

- Pores 1 and 4 are getti ng darker and bigger wh ereas pores 2 and 3 are decaying as time goes.

 Field strengths of the d ecaying pores (2, 3) are decreasing while those of growing pores (1, 4) are increasing or maintainin g.

- Downward motion becomes faster in case of the decaying pores (2, 3).

Flows around pores

(3) Upper Photosphere Observation using NST/ FISS (Cho et al. 2013)

NST/FISS @ BBSO

Fast Imaging Solar Spectrograph (FISS)♪

FISS is a unique system that can do imaging of H-alpha and Ca II 8542 band simultaneously, which is quite suitable for st udying of dynamics of chromosphere.

Hinode & FISS Observation

Telluric line remove & apply Bisector method

The Hα line is formed either in chromospheric fibrils or in deep photosphere whereas the CaII 8542 Å samples the layers in between the fibrils and the photosphere (Cauzzi et al., 2008, 2009).♪

Line-of-sight Velocities

KΛ

Vvert (m/s)

Variation of V_{LOS} in pores at various wavelength.)

Call 8542Å Wing♪ 1500 1000 **S1** S2 500 Strong P V_{Los} (m∕s) Intermediate *b* 0 ⁱ∭Weak⊅ P2 -500-1000-1500-2.2-2.0-1.8 -1.6 -1.4 -2.4-1.2-1.0Wavelength (A)

Uncertainty in the mean velocity was estimated from the velocity fluct uation inside the averaged region.♪

Vertical motion of plasma in the pore

20

(4) Intensity and Doppler Osci ations in Pore Atmosphere(Cho et al. 2015)

FISS Ha Intensity

Wave source and propagation in CaII

Wave source and propagation in Ha

LOS speed and Intensity comparison at Ha (-0.3Å) and CaII (-0.3Å)

Conclusion

Sudden decrease of its speed beyond th e pores can be explained by the projecti on effect caused by inclination of the m agnetic field with a canopy structure.

Slow∮ Magnetoacostic∮ Wave∮

Summary

- Three groups of pores, transition sunspots, and mat ure sunspots have different characteristics in their ar ea, intensity, magnetic field, and LOS velocity as wel I in their relationships.
- (2) A pore grows as the magnetic flux density increases due to the convergence of ambient mass flow and it decays with the decrease of the flux density due to t he diverging mass flow.
- (3) The plasma flows upwards inside the pores and the upflow slows down with height and turns into downfl ow in the upper chromosphere.
- (4) The observed wave is a slow magnetoacoustic wave propagating along the magnetic field lines in the por es.

Thank you for your attention